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Abstract

Nested Voronoi refers to a Voronoi tessellation which contains in each of its cells,
k inner Voronoi tessellations. Until now, this phenomenon has been acknowledged
due to its appearance in nature but left totally unexplored. Nested Voronoi suggests
that there exists a hierarchical structure to some Voronoi tessellations, where given
a point set P, a certain number of points pi, pi+1, ..., pk ∈ P are prioritized for the
outermost tessellation.
Combining concepts from the k -means clustering analysis technique, which provides
an indirect partition of the data set into Voronoi cells, nested Voronoi diagrams can
be constructed by preforming a first-sweep Voronoi diagram for the point set’s k
cluster points, and later, k second-sweep nested Voronoi diagrams for the remain-
ing points belonging to each cluster, or equivalently, the points enclosed in each of
Voronoi cells in the first-sweep tessellation.
This paper provides a multi-threading parallel strategy for both Shamos and Hoey’s
divide-and-conquer paradigm for constructing non-nested Voronoi diagrams [1], and
additionally, the first known serial and parallel implementation of nested Voronoi
diagrams.
Shamos and Hoey proved that if the merge step for two Voronoi diagrams can be
carried out in O(n) then the overall running time of this algorithm is O(n log n),
which is the best-case scenario for constructing a non-nested Voronoi diagram.
This paper provides a further investigation into this divide-and-conquer strategy
by first dividing the original problem into three sub-problems rather than two in
order to achieve an additional gain in speed-up, and then, parallelising the three
sub-problems to further enhance this gain in speed-up.
The results suggest that further investigation into nested Voronoi diagrams be car-
ried out, and that some of the traditional applications of non-nested Voronoi dia-
grams would benefit from using nested Voronoi diagrams over the traditional type.
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Chapter 1

Introduction

Computational geometry is of practical importance because Euclidean space of two
and three dimensions forms the arena in which real physical objects are arranged [1].
The main impetus for the development of computational geometry as a discipline is
due to the progress in computer graphics and computer-aided design and manufac-
turing (CAD/CAM), but many problems in computational geometry are classical
in nature and may come simply from mathematical visualization, or in other words,
curiosity.
Moreover, solving these geometrical problems efficiently on a high-speed computer
requires the constant development and maintenance of new geometrical tools, as
well as the application of fast-algorithm techniques. This is because computational
complexity is central to computational geometry, with great practical significance if
algorithms are used on very large data sets containing tens or hundreds of millions
of points. For such sets, the difference between a O(n2) and O(nlogn) algorithm
may be the difference between days and seconds of computation.
Voronoi diagrams, a field of computational geometry, has found applications in a
multitude of different fields, with relevant material to be found in applications of
astronomy, biology, cartography, crystallography, geology, linguistics, marketing,
metallography, meteorology. operations research, physics, physiology, remote sens-
ing, statistics, and urban and regional planning, to name a few. [3]
In more recent times, Natural Element Methods (N.E.M), or meshfree methods, have
been used to solve partial differential equations by creating a collection of Voronoi
cells and using these cells to decompose the grid over traditional grid types [7]. Pixar
also have a long history of incorporating Voronoi diagrams in their animations to
produce a ”naturalistic” quality to the look of their characters, an example of this
can be seen on the ”dino-skin” in ”The Good Dinosaur”. [6]
All such applications of Voronoi diagrams require high-speed algorithms to handle
the heavy computational pressures involved in solving a PDE using the N.E.M, or
producing high-resolution animations of dinosaur skin.
This paper presents a thread-based parallel implementation of Shamos and Hoey’s
divide-and-conquer strategy for Voronoi diagrams that runs in an optimal time. As
well as this, the paper produces the first known implementation of nested Voronoi
diagrams both in serial and parallel.
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Chapter 2

Nested Voronoi

This paper focuses on the core theoretical concepts necessary for the construction of a
nested Voronoi diagram. This first chapter seeks to introduce readers to the concept
of both Voronoi diagrams and clustering analysis, before combining both concepts
into one in order to hypothesize the practical use of nested Voronoi diagrams.

2.1 Voronoi Diagrams

In mathematics, a Voronoi diagram is a partition of a plane into different regions or
cells that enclose a given set of points, or seeds, such that any point enclosed in a
given region is closest to its generating seed than to any other seed on the plane, as
illustrated in Figure. 2.1.
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Figure 2.1: An example of a Voronoi diagram with six seeds.

Voronoi diagrams were first introduced by Georgy Voronoy who defined and stud-
ied the general n-dimensional case in 1908 [9]. However, practical applications of
Voronoi diagrams can be traced back to Descartes in 1644 who employed these
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tessellations to verify that the distribution of matter in the Universe forms vortices
centered at fixed stars [8]. Peter Dirichlet also used Voronoi in his study of quadratic
forms in 1850, as well as physician John Snow, who used Voronoi in his analysis of
a cholera outbreak in London, 1854.

2.1.1 Formal Definition

Let X be a metric space with distance function d. Let K be a set of indices and
let (Pk)k∈K be a tuple (ordered collection) of nonempty subsets (Voronoi seeds) in
the space X. The Voronoi cell, or Voronoi region, Rk, associated with the site Pk,
is the set of all points in X whose distance to Pk is not greater than their distance
to the other sites Pj, where j is any index different from k. In other words, if
d(x,A) = inf{d(x, a)|a ∈ A} denotes the distance between the point x and subset
A, then

Rk = {x ∈ X : d(x, Pk) < d(x, Pj),∀j 6= k} (2.1)

Moreover, this simple means that given a point set P = {p1, p1...pn} in the plane,
its associated Voronoi diagram, V (P ), divides the plane into n Voronoi cells with
the following properties:

• Each point pi lies exactly in one cell.

• If a point q /∈ P lies in the same region as pi, then the Euclidean distance from
pi to q is less than the Euclidean distance from pj to q, where pj ∈ P, pj 6= pi.

2.1.2 Voronoi Algorithms

This section will briefly outline the algorithms used in this paper to construct a
Voronoi diagram. Moreover, the naive approach for constructing a Voronoi dia-
gram is combined with Shamos and Hoey’s divide-and-conquer paradigm for merg-
ing Voronoi diagrams. Further extrapolation on the design and implementation of
these algorithms can be found in Section. 3.2.3.

Naive approach

Given a point set p = {p1, p1...pn}. The Voronoi cell, or region, for any point
pi ∈ P is is defined as the inter-section of n − 1 half-planes formed by taking the
perpendicular bisector of the segment pipj for all pj ∈ P where i 6= j:

V (pi) = H(pip1) ∩H(pip2) ∩ ... ∩H(pipn) (2.2)

In this notation, H(pipj) refers to the half-plane formed by taking the perpendicular
bisector of pipj. The intersection of any number of half-planes forms a convex region
bounded by a set of connected line segments, as illustrated in Figure. 2.2.
These line segments form the boundaries of Voronoi cells and are called Voronoi
edges. The endpoints of these edges are called Voronoi vertices.
The naive algorithm works by iteratively determining the convex region for each
point p bounded by the intersection of its n − 1 half-planes by tracing the line of
the closest bisector in an anticlockwise motion until it hits a Voronoi vertex, and
repreating this process until a full rotation is complete.
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Figure 2.2: Voronoi cell V (pi) formed by half-plane intersection.

Divide-and-conquer

The first deterministic worst-case optimal algorithm for computing the Voronoi di-
agram has been presented by Shamos and Hoey [4]. In their divide-and-conquer
approach, the set of point sites, P, is split by a dividing line into subsets L and R
of about the same sizes. Then, the Voronoi diagrams V (L) and V (R) are computed
recursively. The essential part is in finding the split line, and in merging V (L) and
V (R), to obtain V (P ). If these tasks can be carried out in time O(n) then the
overall running time is O(nlogn).
[12]. This algorithm is significant from a theoretical stand point because it was the
first to use a divide-and-conquer paradigm. The algorithm also boasts a O(nlogn)
time complexity equivalent to that of Stephen Fortune’s sweep line algorithm [4].
Which, in recent times, due to the algorithm’s elegance, has become somewhat of a
standard in the literature for constructing Voronoi diagrams.
This paper focuses on implementing the divide-and-conquer paradigm for the con-
struction of a Voronoi diagram. Its selection was due to the fact that it is naturally
adapted for execution in multi-processor machines and the hypothesis that the prob-
lem could be divided into more than two sub-problems for an additional speed-up,
as revealed in Section .

2.2 k-means clustering

Cluster analysis or clustering is the task of grouping a set of objects in such a way
that objects in the same group (called a cluster) are more similar (in some sense) to
each other than to those in other groups (clusters). It is a main task of exploratory
data mining, and a common technique for statistical data analysis, used in many
fields, including pattern recognition, image analysis, information retrieval, bioinfor-
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matics, data compression, computer graphics and machine learning.
k -means clustering is clustering analysis technique and method that aims to parti-
tion n observations into k clusters in which each observation belongs to the cluster
with the nearest mean, known formally as the cluster centroid.
Reasons for popularity of k -means are ease of interpretation, simplicity of imple-
mentation, scalability, speed of convergence, adaptability to sparse data, and ease
of out-of-core implementation [2].
The k -means algorithm is used for the discovery of k centroids for the first-sweep
Voronoi diagram in the nested Voronoi algorithm. The k -means algorithm was cho-
sen for this task because it provides an indirect partition the data set into Voronoi
cells, as well as clusters.

2.2.1 Formal Definition

Suppose that we are given a set of n data points p1, p2, ..., pn such that each data
point is in Rd. The problem of finding the minimum variance clustering of this data
into k clusters is that of finding k points {mj}kj=1 in Rd such that

1

n

n∑
i=1

(
min d2(pi,mj)

)
(2.3)

is minimized, where d(pi,mj) denotes the Euclidean distance between pi and mj.
The points {mj}kj=1 are known as cluster centroids or cluster means. Infor-
mally, the problem in (2.1) is that of finding k cluster centroids such that the av-
erage squared Euclidean distance (also known as the mean squared error or M.S.E,
for short) between a data point and its nearest cluster centroid is minimized; the
euclidean distance, mean calculation and M.S.E routines will be covered in more
depth in Section 3.2.
Unfortunately, the solution to this problem, finding when (2.1) is minimized, and
the global optimum of the data set reached, is known to be NP-complete. The clas-
sical k-means algorithm [10], however, provides an easy-to-implement approximate
to the solution in (2.1).

2.2.2 The k-means Algorithm

In the k -means algorithm, one chooses the desired number of clusters k, and their
associated centroid values, both of which are chosen either randomly or through
the use of some heuristic, covered in Section . The algorithm works by iteratively
minimizing the within-cluster sum of squares, or variance. The discovery of these k
cluster points is necessary for the construction of the first-sweep Voronoi diagram.
The above algorithm can be thought of as a gradient-descent procedure which begins
at the starting cluster centroids and iteratively updates these centroids to decrease
the objective function in (2.1) [2].
It is known that k-means will always converge to a local minimum. The particular
local minimum found depends on the starting cluster centroids. Thus, endeavours
must be made to maximize any local minima the algorithm may find itself in, or
equivalently, choose better starting centroids. Heuristics to solve each of these prob-
lems will be discussed in the next section.
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2.2.3 Heuristics

Heuristics play a crucial role in the initialization stage of the k -means algorithm.
As previously mentioned, the user inputs the desired number of clusters k into the
algorithm. But given a data set, how does one quantify the number of clusters that
exist in it and choose the cluster’s starting centroids? This section elucidates some
heuristic techniques that seek to provide a solution to each of these problems.

The elbow method

A simple, yet effective way to approximate the number of clusters k in a data set is
by using what is known appropriately as ”the elbow method;;. The heuristic works
by running the k -means algorithm for a different number of clusters k and plotting
the variance as a function of the number of clusters.
The point on the graph which represents an ”elbow” or ”knee of a curve” is the point
where adding another cluster would fail to give a better model of the data. Thus,
the value of k for when the graph ”elbows” is chosen as the appropriate number of
clusters.
The intuition behind this is that when the graph ”elbows”, it is due to a very slight,
or hardly noticeable change in the variance, which suggests, that the algorithm is
”over-fitting”.
Given a relatively simple data set consisting of three Gaussian distributions, as
shown in Figure. 2.3, the elbow method preformed valiantly, where the value of k
for where the graph ”elbows” is in fact, at k=3, as shown in Figure. 2.4.
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Figure 2.3: Dataset for three distinct Gaussian distributions.
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Figure 2.4: Elbow method for three distinct Gaussian distributions.

The heatmap method

An alternative, and experimental method to approximate the number of clusters k
in the data set, as well as initial value centroids, is a heuristic which seeks to enhance
ones visual perception of the data by visualising it in three dimensions
The heuristic works by creating a two-dimensional matrix for the data set to be
representative of a histogram, where each element of the matrix represents a range
for both the x and y-axis. Each element thus represents a square portion of the
data set.

Heatmap	of	dataset
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Figure 2.5: Heatmap of distribution for number of bins = 20.

For example, suppose we have a data set generated on a two-dimensional uniform
distribution U (0,1) and the number of bins = 20. Then the bottom left element
on the matrix will have range, 0 < x, y < 0.05. Thus, for any point in the data
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set whose x and y-coordinate both fall between this range, p = (0.002, 0.04) for
example, the element of the matrix associated with this range will be incremented.
The resulting heatmap of the matrix reveals ”hot”, or peak points in the data.
Counting the number of visible peaks reveals the optimal number of clusters k in
the data set, and sampling points in the range associated with these peaks give an
optimal choice of initial centroids.
Since there are general rules for how many bins there should be in a histogram, such
as the Freedman–Diaconis rule [11], the heatmap method provides a good means to
approximate initial cluster centroids. Of course, this method works when combined
with the elbow method to prove the validity of its results.

2.3 Nested Voronoi

Nested Voronoi diagrams are, as the name suggests, smaller Voronoi tessellations
nested inside a larger Voronoi tessellation as shown in Figure. 3.1. When construct-
ing a Voronoi diagram, the user has control only of its seeds, whereas in clustering
analysis, the user has no control of its resulting centroids. Thus, nested Voronoi is an
attempt to endow Voronoi diagrams with a naturalistic quality through taking the
outputted centroids of the k -means algorithm and inputting them into the Voronoi
algorithm as seeds for a Voronoi tessellation.
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Figure 2.6: Nested Voronoi diagram for k=30.

2.3.1 Why combine Voronoi with Clustering Analysis?

As previously mentioned, the k -means algorithm provides an indirect partition of
the data set into Voronoi cells, Fig. 2.7 . Therefore, each point in the data set is
classified both by its cluster class, as well as the Voronoi cell that encloses it.
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Figure 2.7: k -means convergence to Voronoifor k=5.

This classification becomes particularly useful when one wishes to produce nested
Voronoi diagrams, since by the k -means algorithm, given an arbitrary point p and
its corresponding cluster M and Voronoi cell V (p), there should lie no point pi ∈
Mi such that ∃ pi ∈ V (pj).
Moreover, this simply means that for any nested Voronoi diagram, none of its edges
will breach any of the edges of the larger Voronoi diagram which encloses it since
∀pi ∈Mi, pi ∈ V (pi).

2.3.2 Applications

Nested Voronoi has a number of potential applications in fields such as data analyt-
ics, road-network planning and agriculture science.
In road-network planning, for example, nested Voronoi diagram can be used to es-
tablish an efficient and even flow of travel for motor vehicles across a landmass.
This derivation comes from the fact that given a point set P, and its associative
Voronoi diagram V (P ), then for any point q on any of the Voronoi edges e ∈ V (P ),
q is always equidistant between either two or three Voronoi seeds.
Now, letting these point in P represent cities, towns and suburbs on a continent,
clustering analysis can identify k cluster locations, where population and/or trading
is dense.
A first-sweep Voronoi diagram can then be generated for each of these cluster loca-
tions, providing motorway ring-roads around the locations on the continent where
population and/or trading is dense.
Then, k second-sweep Voronoi diagrams can be generated for each of the cells in the
first-sweep Voronoi diagram, providing ring roads around the locations that make
up each cluster and consequently, break-points along the motorway.
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2.3.3 Problem Statement

Given that this is the first implementation of nested Voronoi diagrams and there is
no existing literature on the topic, this paper focuses its efforts on implementing a
nested Voronoi diagram in a closed form, that is, a nested Voronoi diagram for the
purposes of representation, and not combined with any real practical application.
Even though there exists no literature on nested Voronoi diagrams, there exists
bountiful literature on both clustering analysis and Voronoi diagrams. Thus, this
paper combines aspects of each literature to present not only a serial implementation
for nested Voronoi diagrams, but a parallel implementation.
Indeed, the parallel implementation for nested Voronoi diagrams is derived from a
parallel implementation of Shamos and Hoey divide-and-conquer strategy for con-
structing a non-nested Voronoi diagram.
All implementations of nested Voronoi diagrams in this paper are performed on a 2-
dimensional uniform distribution U (0, 1), where unbounded cells, whose seeds form
an unbounded convex region are made bounded by ”boxing” them in with either
four simple line equations, in the case of the first-sweep diagram, or the edges of a
larger Voronoi cell, in the case of a second-sweep nested Voronoi diagram.
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Chapter 3

Serial Design & Implementation

Now that the fundamental theory behind Voronoi diagrams and clustering analysis
has been covered, in this chapter, the general approach to implementing Nested
Voronoi diagrams in serial will be discussed. The design structure of the code is
explained, such as the data structures and classes used, as well as any of the core
geometrical routines and algorithms illustrated.

3.1 Design Approach

When writing code in C++, steps must be taken to break the code up into as many
logical partitions as possible. All the serial code for this paper was written in C++17,
allowing use of object oriented programming and many of the newer features of the
standard library (STL) such as lambda expressions and template functions. An
endeavour was made to use as much functionality from the standard library (STL)
as possible, not only because this is considered good practice, but because it also
helps to make the code more portable.

3.1.1 Design Structure

Figure 3.1 illustrates the overall structure and design of the code - in both serial
and parallel. The code is split into five main files.

• main.cc - This is the main C++ file and is used for invoking the clustering
analysis and Voronoi operations. To do this, the output of the clustering
analysis operation is taken and inputted into the Voronoi operation.

• voronoi.cc - Code for a Voronoi class and the construction of a Voronoi
diagram, either nested or non-nested. It also contains code for merging of two
Voronoi objects into one whole Voronoi diagram.

• cluster.cc - Code for a Cluster class and implements the k -means cluster-
ing algorithm to partition the data set into k different clusters.

• geometry.cc - Code for holding geometrical data structures and routines.

• empirical.cc - Code for preforming empirical analysis on a given data set.

• heuristic.cc - Code for heuristic techniques necessary for the discovery of
the number k cluster points in the k -means algorithm.

16



C++17

boost.mpi

voronoi.cc 
voronoi.h

cluster.cc 
cluster.h

geometry.cc 
geometry.h

empirical.cc 
empirical.h

heuristic.cc 
heuristic.h 

main.cc

Figure 3.1: Structure for C++ code implementation.

voronoi.cc and cluster.cc are the core files. voronoi.cc depends on routine
operations contained within the geometry.cc file. Likewise, cluster.cc depends on
routine operations contained in the geometry.cc, empirical.cc and heuristic.cc

files.

3.1.2 Data Structures

For this paper, two classes were written, Voronoi and Cluster, each of which are
responsible for storing and generating the two core components of the paper - clusters
and a Voronoi diagram for a given data set. All other data structures are geometrical
data structures and are contained within the geometry.cc file. These geometrical
data structures include Point, Line, Bisector, Edge and Cell and represent their
namesake.

3.2 Implementation

In theory, the general approach for constructing a nested Voronoi diagram is as
follows:

1. Import a 2-dimensional data set, or alternatively, sample from a 2-dimensional
random distribution.

2. Invoke a heuristic routine in heuristic.cc to approximate the number of
clusters, k, in the data set.

3. Create a Cluster object and generate k clusters by partitioning the data set
into k distinct subsets.

4. Construct a first-sweep Voronoi diagram using the k centroid points outputted
from the k -means algorithm as seeds for the tessalation.

17



5. Generate k second-sweep Voronoi diagrams for each of the k cells in the first-
sweep tessellation, using the remaining points enclosed in each cell as seeds
for the inner tessellations.

The next logical step is translating this theory into code. The next few section
will walk through the selected algorithms and elucidate any core geometrical or
empirical routines that were used in the construction of a nested Voronoi diagram.

3.2.1 Geometrical Concepts

Two of the core geometrical routines used throughout this paper for the construction
of a Voronoi diagram are the cross product and euclidean distance routines and can
be found in the geometry.cc file. Both routines are fairly simple to implement
in code, but are considered extremely powerful tools in the field of computational
geometry.

Euclidean metric

Euclidean space is the fundamental space of classical geometry and is of practical
importance because Euclidean space of two and three dimensions forms the arena
in which real physical objects are arranged.
Thus, given two points p and q in Euclidean n-space, one may recall from a first year
basic linear algebra class that the distance between these two points is the length
of the line segment connecting them, denoted pq, and is given by the Pythagorean
formula:

d(p, q) = d(q, p) =

√√√√ n∑
i=1

(qi − pi)2 (3.1)

An illustration of the Pythagorean formula is shown in Figure 3.2.
Euclidean distance, despite its simplicity, is the only metric that is invariant under
rotation. Moreover, this conforms with the general qualities of the universe, which
is also rotation invariant. This is one of the core reasons why the Euclidean metric
is so useful.
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Figure 3.2: The Pythagorean theorem states that the sum of the areas of the two
squares on the legs (a and b) equals the area of the square on the hypotenuse (c).

Orientation of Points

The orientation of something, or somebody, refers to their position relative to some-
thing else. Abstractly speaking, the position of anything in Euclidean space can only
really be described relative to its orientation to something else. The cross product
routine is a way to encode this sense of orientation into machines and is for this rea-
son a core concept in computational geometry. Given two vectors −→v1 = x1î+y1ĵ+z1k̂
and −→v2 = x2î+y2ĵ+z2k̂, one may recall from a first-year class in linear algebra that
the cross product of these two vectors −→v1 ×−→v2 is orthogonal to both −→v1 and −→v2 and
its direction is given by the ”right-hand-rule”.
Therefore, If we have two arbitrary vectors in the ij-plane such that z1 = z2 = 0
then the resulting −→v1 ×−→v2 will be given by αk̂ and the sign of α will depend on the
orientation of the vector. [5]
This can be generalized for points. Given three points −→p1 = (x1, y1),

−→p2 = (x2, y2)
and some other arbitrary point −→pi = (xi, yi) in a point set P, the mnemonic for cross
product in terms of determinants is used to determine the orientation of pi with
respect to the other two points, and is given by:

∣∣∣∣∣∣
î ĵ k̂

x2 − x1 y2 − x1 0
xi − x1 y1 − x1 0

∣∣∣∣∣∣ =

∣∣∣∣x2 − x1 y2 − x1
xi − xi yi − y1

∣∣∣∣ k̂ (3.2)

where the sign of the determinant reveals whether the point is ordered clockwise
(positive) or anti-clockwise (negative). Figure 3.3 illustratively demonstrates this
logic.
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Figure 3.3: The right hand rule reveals that the cross product of −→p1 with −→p2 , −→p3 , −→p4
will be in the same direction, whereas the cross product of −→p1 with −→p5 will be in the
opposite direction and hence opposite sign.

3.2.2 Empirical concepts

Whilst the construction of the Voronoi diagram relies only on geometrical concepts,
the k -means algorithm uses empirical analysis to partition the data set into clusters,
or Voronoi cells. This section will elucidate some of the core empirical concepts used
in the k -means algorithm with retrospect to Voronoi diagrams.

Expectation

The expectation of a random variable X is one of the most useful concepts in
probability theory. If X is a discrete random variable that takes on one of the
possible values x1, x2, ..., xn then the expectation or expected value of X, also called
the mean of X and denoted by E[X], is defined by

E[X] =
∑
i

xiP{X = xi} (3.3)

[13]. Intuitively, given a number of darts on dart board, the expected value, or
mean, approximates where on the dart board the throwers darts tended to, as illus-
trated in Figure 3.4. Formally, this mean point is known as the geometric ”center of
mass”, and is a weighted average of the possible values that X can take on. As the
name suggests, the k -means algorithm relies on the expectation values, or means,
to partition the data into clusters.
In particular, the k -means algorithm uses a simple average in each dimension to ap-
proximate the mean point, or centroid, cj of a given cluster Mj. In two-dimensions,
this point is given by
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Figure 3.4: The blue dot illustrates the mean point, or ”center of mass”, and the
yellow dot illustrates the median point, or ”central tendency”.

E[Mj] =
1

n

( n∑
i=1

xi,
n∑

i=1

yi

)
= (µX , µY ) = cj (3.4)

Thus, given a cluster of points Mj = {p1, p2, ..., pm}, the mean, or centroid of this
cluster, cj, is a point for which all of these points ”encircle”.

Mean squared error

The mean squared error (M.S.E) is calculated by taking the average of the square of
the difference between the original and predicted values of the data. In the context
of the k -means algorithm, it is the averaged squared Euclidean distance between the
centroid value and its cluster values and is a measure of the within-cluster variance.
It is given by

1

n

n∑
i=1

(
min d2(cj, pi)

)
(3.5)

In geometrical terms, since the cluster is described geometrically as a circle in the 2-
dimensional space, the variance approximates the diameter, or informally speaking,
the size of the cluster. Thus, the k -means algorithm attempts to minimize the
variance, and so minimize the diameter, or size, of each cluster through the use of
the M.S.E metric.

3.2.3 Algorithms

Three core algorithms were used in this paper - the k -means algorithm, the naive
Voronoi algorithm, and Shamos and Hoey’s divide-and-conquer algorithm for Voronoi
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diagrams. For the construction of a Voronoi diagram, the Naive approach is com-
bined with the divide-and-conquer algorithm for Voronoi diagrams. Now that the
core geometrical and empirical tools involved in these algorithms has been covered,
this section will detail the implementation of these algorithms.

k-means algorithm

The k -means algorithm aims to partition n observations into k clusters in which
each observation belongs to the cluster with the nearest mean (cluster centers or
cluster centroid), serving as a prototype of the cluster. This results in a partitioning
of the data space into Voronoi cells. The core concepts contained in the algorithm
have already been covered. The pseudocode for the algorithm can be found at the
end of this chapter.

Naive Approach

The naive approach for constructing a Voronoi diagram involves determining the
convex region for each point p bounded by the intersection of n−1 half-planes. It
uses two of the core geometrical concepts discussed in Section 3.2.1. The psudeocode
for the algorithm can be found at the end of this chapter.
An illustration of what the algorithm looks like on the first iteration is shown in
Figure 3.5. It is important to note that there may exist a number of intersections
in the anticlockwise direction. Thus, the intersection point with minimal Euclidean
distance from m on the first iteration, and the previously found vertex thereafter,
is accepted as the new vertex for the Voronoi cell region, V (p).
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Figure 3.5: The right hand rule tell us that the cross product −→pq with
−→
pi1 and

−→
pi2 is

in a clockwise direction and hence will have a positive determinant. Whereas, the

cross product of −→pq with
−→
pi3 and

−→
pi3 is in an anticlockwise direction and hence will

have a negative determinant.

Merging two Voronoi diagrams

Given a set of Voronoi seeds, S, the merging of two Voronoi diagrams involves com-
puting the set of perpendicular bisectors of the sets PL and PR i.e., B(PL, PR), of
all Voronoi edges of V (O) that separates the seeds in PL from regions of sites in PL.
The idea of merging based on the fact that the edges of B(PL, PR) form a single
y-monotone polygonal chain, as illustrated in Figure 3.6, which reveals where one
should add new and remove unwanted vertices.
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Figure 3.6: Polygonal chain indicates where on should add new and remove unwanted
vertices.

Once this polygonal chain is found, it is a matter of ’splicing” in and out of
the chain. The approach here is to add to the cell on the left, call it V (p), and
to the cell on the right, call it V (q), any vertices of the chain which are enclosed
within either of these cells. Once the vertices of the merged cell are added to both
cells, the removal of the unwanted vertices and edges can be done on the fly, through
removing any vertex in V (p) that lies to the right of this polygonal chain (clockwise),
and likewise, removing any vertex in V (q) that lies to the left of this polygonal chain
(anticlockwise). The psudeocode for the algorithm can be found at the end of this
chapter.

3.3 Results

This section accounts the results for each of the prior algorithms stated in Section
3.2.3. The test bed architecture for these serial implementation results was done on
a 1.80GHz Intel Core i5-5350U CPU, with 3Mb cache and 2 cores.
The optimized serial results accounts for any speed-up obtained by combining the
naive approach with Shamos and Hoey’s divide and conquer algorithm for the con-
struction of a Voronoi diagram and preforming a ”two-step” merge over the tradi-
tional single one-step merge in the literature.

3.3.1 Serial Implementation

k-means algorithm

The k -means algorithm was tested on a relatively simple data set containing three
distinct Gaussian distributions and its performance is determined by two distinct
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factors - its speed and the validity of its results.
For the initialization stage of the algorithm, the number of clusters k was approxi-
mated using the elbow method covered in Section.. and the initial cluster centroids
was sampled using k random points in the data set. Since the k -means algorithm
chooses these intial cluster centroids randomly, this paper uses the std::random device

from the C++ <random> library to obtain different results on different configurations
in order to compare results and determine the algorithm’s proficiency for different
initial centroids.
Since each configuration of the algorithm produces different results the results for
each test in this section is averaged over twenty different configurations.
In the context of algorithmic speed, the k -means algorithm, as expected, has a con-
siderably large time complexity, Figure. 3.7 illustrates its quadratic scaling. This is
due to the large number of mean calculations necessary in the update step. How-
ever, despite this large time complexity, the algorithm scales far beyond the Voronoi
diagram, which stops scaling over 30,000 seeds.
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Figure 3.7: k -means algorithm for CPU time vs problem size.

In the context of results, the k -means algorithm produced valid results on 75%
of its configurations. Figure. 3.8 illustrates a poor configuration of the k -means
algorithm, whereas Figure. 3.9 illustrates a good configuration.
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Figure 3.9: Good configuration of k -mediods algorithm.

These results suggest that improvements are necessary for both aspects of the
algorithm’s performance. There does not exist a go-to heuristic to determine good
initial centroid values, however, a quick-and-dirty solution to this problem involves
rerunning the algorithm, averaging the centroid results, and using these averaged
results as input into the algorithm in order to maximize the quality of any local
minima we find ourselves in. This simple strategy proved effective for reruns in
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serial with as little as four reruns. Using the heatmap method covered in 2.2.2
to choose good initial starting centroids also proved equally effective despite the
heuristic not being an automatic process.

Voronoi Diagram

As expected, the naive approach for constructing a Voronoi diagram has a consid-
erably large time complexity and does not scale well for a large number of seeds;
Figure 3.10, illustrates the algorithm’s quadratic scaling.
This large time complexity is mainly due to the large number of computations that
must be done in order to determine the convex region for each cell bounded by the
intersection of its n− 1 half-planes.
Each point must compute n− 1 half-planes. Thus, repeating this process for the n
number of seeds, we have a O(n2) algorithm for constructing a Voronoi diagram.
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Figure 3.10: Naive approach for CPU time vs problem size.

3.3.2 Optimized Serial Implementation

Voronoi Diagram

Divide-and-conquer techniques are the basis of efficient algorithms and are used in
a sundry of different problems. Thus, it is no surprise that the optimized method
for constructing a Voronoi diagram using Shamos and Hoey’s divide-and-conquer
paradigm preforms considerably better than the naive approach.
Through dividing the problem recursively into sub-problems the issue of computing
the n− 1 bisectors is reduced enormously, as shown in Figure 3.11.
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Figure 3.11: Comparison for divide-and-conquer approach for CPU time vs problem
size.

Moreover, an additional speed-up can be achieved through dividing the problem
into more than 2 sub-problems, and consequently calling the merge function more
than once. This will from now on be referred to as a ’two-step’ Voronoi merge. The
additional speed-up of a two-step merge can be seen in Figure. 3.12
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Figure 3.12: Comparison for divide-and-conquer approach with different number of
merges.

As you can see, the construction time for a Voronoi diagram has been reduced
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considerably. A major motivation for this paper was not only parallelizing Shamos
and Hoey’s divide-and-conquer method, but providing an implementation that could
divide the problem into more than two sub-problems. The results suggest that a
parallel implementation for the two-step divide-and-conquer algorithm would further
enhance any speed-up obtained. For illustration purposes, the evolution of a two-
step Voronoi merge process for a large scale Voronoi diagram is shown in Figure
3.13, 3.14 and 3.16.
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Figure 3.13: Two-step Voronoi merge before the first merge.
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Figure 3.14: Two-step Voronoi merge after the first merge (merging right-hand-side
Voronoi with middle Voronoi diagram from right to left).
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Figure 3.15: Two-step Voronoi merge after the second merge (merging middle
Voronoi with left-hand-side Voronoi diagram).

Nested Voronoi Diagrams

When constructing nested Voronoi diagrams, the domain is in many ways being
decomposed into k Voronoi cells. Moreover, this means that one should expect the
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nested Voronoi diagram to preform noticeably better than a traditional Voronoi di-
agram. This is for obvious reasons, since the problem of the n-1 half planes has
been reduced to k sub problems.
The result is a nested Voronoi diagram that does not look too dissimilar to a stan-
dard Voronoi diagram, which is why nested Voronoi diagrams could be used as an
alternative when constructing large scale traditional Voronoi diagrams.
Of course, one needs to factor in the time it would take to retrieve the k cluster
centroids for the first-sweep tessellation, but this paper only uses clustering analysis
as a means to endow a naturalistic quality to the Voronoi diagram, one could just
as easily use a quasi-random number generator that would provide points that fill
the data space well.
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Algorithm 1 k -means algorithm

1: MSE = LargeNumber
2:

3: Select initial cluster centroids {cj}kj=1.
4:

5: while (MSE < OldMSE) do
6: OldMSE = MSE;
7: MSE’ = 0;
8: for j = 1 to k do
9: mj = 0;nj = 0;
10: end for
11: for i = 1 to n do
12: for j = 1 to k do
13: compute the squared Euclidean distance d2(pi, cj);
14: end for
15: find closest centroid to point cl to pi;
16: c’l = c′l + pi; n′

l = n′
l + 1;

17:18: MSE’ = MSE’ + d2(pi, cl);
19: end for
20: for j = 1 to k do

21: nj = max(nj, 1); cj =
c′j
nj

;

22: end for
23: MSE = MSE’;
24: end while

Algorithm 2 Naive Voronoi

1: for i = 0 to n do
2: for j = 0, j 6= i to n do
3: Calculate and store perpendicular bisector of the line segment pipj;
4: Find the point pk with minimal Euclidean distance to pi, i.e
5: pk = min d(pi, pj);
6: end for
7: m = midpoint(pipk)
8: while new vertex has not already been visited do
9: For the perpendicular bisector of the line segment pipk, find its
10: intersection with all other bisectors, call these intersection points {i}mj=1.
11: for k = 0 to m do
12: if −−→pim×

−→
piik == −1 and ik = min d(pi, ik) then

13: new vertex = ik
14: end if
15: end for
16: end while
17: end for
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Algorithm 3 Merge Voronoi

1: Input: Voronoi diagrams V (PL) and V or(SR) of sets PL and PR.
2: Output: Voronoi diagram V (P ) of the whole set.
3:

4: Construct the Convex hull of PL and PR.
5: Find the lowest common support line pq that connects the two hulls, call it
B(PL, PR)

6: Draw the perpendicular bisector of the line segment pq.
7:

8: while B(PL, PR) is not the upper common support line do
9: Find the intersection point of B(PL, PR) with the boundary of V (PL,

10: call it p′L
11: Find the intersection point of B(PL, PR) with the boundary of V (PR),
12: call it q′R.
13: if y-value of p′L < q′R then
14: wi = p′L
15: PL = the seed on the other side of the edge intersection.
16: else
17: wi = q′R
18: PR = the seed on the other side of the edge intersection.
19: end if
20: For the cell with generating the generating seed PL, remove any vertex that

lies anticlockwise to the line segment wiwi + 1 connecting two points of the
polygonal chain and add the vertices of the polygonal chain, wi, and wi + 1 to
the cell.

21: Likewise, for PR, remove any vertex that lies clockwise to the line segment
wiwi + 1 connecting two points of the polygonal chain and add the vertices of
the polygonal chain to the cell.

22: end while
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Chapter 4

Parallel Design & Implementation

Now that results have been obtained for the serial implementation of the core al-
gorithms in this paper, this chapter presents a parallel approach for the construc-
tion of non-nested and nested Voronoi diagrams. The initial intentions was to also
parallelize the k -means algorithm, however, since the k -means algorithm scales far
beyond the Voronoi algorithm, it made little sense to do this, and so, all parallel
implementations are strictly based on the Voronoi constructions.

4.1 Design Approach

The parallel strategy in this chapter used multi-threading techniques from the
C++17 standard library (S.T.L). Initially, the intention was to use the boost.mpi

library to distribute k clusters to k different processes and use a mixture of pro-
cess and thread based parallelism to construct k nested Voronoi diagrams using the
divide-and-conquer method. However, this strategy proved extremely difficult to
implement as it introduced a number of bugs. As well as this, any speedup was
not expected to differ greatly compared to using just threads. This is because the
nature of the divide-and-conquer strategy provides an ready-made division of the
problem into sub-problems that are waiting to be processed concurrently.

4.2 Implementation

The setup for parallelizing Shamos and Hoey’s divide-and-conquer strategy for
Voronoi diagrams is relatively simple. This is because divide-and-conquer algo-
rithms are naturally adapted for execution in a multi-processor, or multi-threading
machine, as previously mentioned. In other terms, through dividing the problem
into sub-problems and successfully merging their solutions, the hard work is already
done.
The general approach to implementing a Voronoi diagrams in parallel is as follows:

1. Sort the points in the data set by x -coordinate and divide the points into two
or three distinct subsets.

2. For each subset, concurrently construct the Voronoi diagram associated with
its points.
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3. Merge each process from right to left.

As you can see, the implementation is similar in design to the serial implementation.
This is because the algorithm is already adapted to be parallelized.
The general approach for constructing a nested Voronoi diagram used a different
approach. In order for each nested Voronoi diagram to be constructed it must have
a copy of the first-sweep Voronoi diagram, in order to determine which Voronoi
cell of the first-sweep diagram the nested its seeds are enclosed within. The first-
sweep diagram decomposes the problem space into k subsets. Therefore, each nested
Voronoi diagram can be constructed on different threads.
The general approach to implementing nested Voronoi diagrams in parallel is as
follows:

1. Generate a first-sweep Voronoi for the k cluster centroids.

2. For each of the k cells in the first-sweep Voronoi tessellation, sort their corre-
sponding cluster by x -coordinate.

3. Concurrently construct k nested Voronoi diagrams.

4.3 Results

This section will first detail the results obtained from the thread-based approach
used to parallelise a single non-nested Voronoi diagram using Shamos and Hoey’s
divide-and-conquer paradigm. It will then detail the results obtained from the multi-
threading-based approach used for constructing a nested Voronoi diagram.

4.3.1 Voronoi Diagram

It is no surprise that through parallelizing Shamos and Hoey’s divide-and-conquer
strategy for constructing a Voronoi diagram that a significant speed-up was achieved.
Through dividing the sub-problem successfully, the CPU could concurrently com-
pute their independent parts of the Voronoi diagram.
Two different thread-based policies, asynchronous and deferred, were used compared
to determine which policy was superior. 4.1.
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Figure 4.1:

As illustrated in Figure. 4.1, the asynchronous thread policy was optimal. This
is because the problem of constructing each sub problem is independent of the other.
Moreover, neither thread will need to be deferred until either a wait() or get() is
called on the future. Thus, everything can be completed asynchronously.
Moreover, one of the focuses of this paper was to divide the problem of the Voronoi
diagram into more than two sub problems. As seen in Section 3.3.2 , this focus was
achieved. The desire was borne from the hope that parallelizing a two-step Voronoi
merge would produce a significant speed-up compared to any other strategy.
This hope turned to reality, and the 3-step merge on asynchronous threads for a
two-step merge produced an optimal solution, as shown here in Figure 4.2.
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Figure 4.2:

To put these results into perspective. The naive approach for constructing a
Voronoi diagram for n = 20000 took 83648ms = 83.648s to terminate, whereas
the thread-based divide-and-conquer parallel strategy with a two-step merge took
only 12711ms = 12.711s to terminate. Ultimately making for a speedup of 70.937s,
translating to over one minute in waiting time.

Nested Voronoi Diagrams

The following results are obtained through each thread simultaneously constructing
their nested Voronoi diagram. The results used a fixed number of nested Voronoi di-
agrams, k=4. As Figure. 4.3 suggests, a considerable speed-up is obtained through
this multi-threading-based strategy.
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This speed up here is considerable. This is for a similar reason to why there is
a speed-up using the divide-and-conquer strategy. Through effectively decomposing
the problem space into k Voronoi cells, each nested Voronoi diagram needs only to
compute the m− 1 bisectors for each of the m points enclosed in the larger Voronoi
cell, as opposed to the n− 1 bisectors for the total number of points in the problem
space.
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Chapter 5

Conclusion

5.1 Final Remarks

In this paper, a serial implementation for constructing a Voronoi diagram using
C++17 was completed. This problem was optimized using Shamos-and-Hoey’s
divide-and-conquer approach and divided into three sub-problems to achieve an
additional speed-up.
Furthermore, this strategy was parallelized using asynchronous threads to produce
a near linear type scaling, and for large scale Voronoi tessellations, the waiting time
was reduced enormously. Additionally, the first known serial and parallel implemen-
tation for nested Voronoi was produced.
The results suggest that if nested Voronoi diagrams are not to be used in the future
for the purpose of their own application, they can be used as a substitute for the
construction of large scale non-nested Voronoi tessellations. This is because the re-
sulting tessellation is not too dissimilar to the non-nested Voronoi diagram for the
same point set.

5.2 Future Work

In regards to fields of application, nested Voronoi diagrams should be used in any
traditional Voronoi problem where a point set can be categorized into clusters, as
per the example in 2.3.2.
The idea for producing nested Voronoi diagrams is borne from the desire to endow
the Voronoi tessellation with a naturalistic quality. Through using k cluster points
as initial seed values for the first-sweep Voronoi diagram, and all other cluster points
within each cell thereafter, Voronoi diagrams are being produced as usual, but not
in the traditional sense. Thus, any application of Voronoi diagrams that require the
tessellation to inherit natural qualities should also use nested Voronoi diagrams.

With respect to further work on the code, the geometry.cc file in this paper
provides a layman’s library for the geometrical concepts necessary for constructing
a Voronoi diagram. Encoding geometrical concepts into a machine proved to be
extremely difficult at times during this project because of the large number of end-
cases that need to be plugged in something as simple as a standard line equation.
Thus, any future work on nested Voronoi diagrams should use a geometric library,
such as the one provided by boost to make the core data structures more stable and
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prevent the bugs that occur on some configurations of this program.
In order to achieve maximum performance, one should use the boost.mpi library
to distribute k clusters to k different processes and use a mixture of process and
thread based parallelism to construct k nested Voronoi diagrams in parallel using
the divide-and-conquer method. As mentioned in Section 4.1, this approach proves
extremely difficult to implement, however, rewriting some of the core geometrical
data structures using the boost.geometry library, I believe that this speed-up could
be achieved.
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